SETTING UP A MULTI-ACCOUNT AWS ENVIRONMENT USING AWS ORGANIZATIONS,
IAM IDENTITY CENTER (FOMERLY SSO) AND TERRAFORM.

Index

1. Overview

2. Prerequisites

3. Terraform Directory Structure

4. Step-by-Step Breakdown
o Organization Setup
o Account Creation (Module-Based)
o AWS SSO and Permission Sets
o Group and User Setup
o Account Assignments
o Service Control Policy (SCP)

5. Costand Management Considerations

6. Security Best Practices

7. Proof of Concept

1. Overview

This documentation outlines how to set up a multi-account AWS environment using
AWS Organizations, SSO, and Terraform. It includes automated account creation,
permission set assignments, and security policies. It uses a modular approach to
provision reusable and clean infrastructure code.

2. Prerequisites

Before deploying:
o Terraform installed
e AWS CLI configured

¢ Administrative IAM credentials with organizations:?*, sso:* and iam:* permissions

¢ NB: With SSO(IAM Identity Center) you need explicit permission grants attached
to the user being used to provision these resources with Terraform even if you
have the AdministrativeAccess policy attached to this user.

You can use the AWS managed policy Policy ARN:
arn:aws:iam::aws:policy/AWSSSOServiceRolePolicy or search for these in
IAM console:

AWSSSOServiceRolePolicy

AWSSSODirectoryAdministrator

AWSldentityStoreServiceRolePolicy OR

create a custom policy like:

{
"Version": "2012-10-17",

"Statement": [

{
"Effect": "Allow",
"Action": [
"sso:*",

"sso-admin:*",
"identitystore:*"
1,
"Resource": "*"
}
1
}

and attach it to the user.
This is AWS security design to prevent accidental SSO modifications.

3. Terraform Directory Structure

AWS-ORGANIZATION
aws-org-accounts
> terraform
v modules\ account
main.tf
outputs.tf
variables.tf

= terraform.lock.hcl
backend.tf

main.tf

outputs.tf

providers.tf
README.md
terraform.tfvars

variables.tf

aws-org-project/
F— main.tf # Entry point for creating the org, accounts, policies
— variables.tf
F— outputs.tf
L modules/
L account/
F— main.tf # Creates OUs and accounts

I—variables.tf

VARIABLES

The snippet of terraform configuration below shows a terraform.tfvars file which will
help you get a better understanding of this documentation. The terraform.tfvars
variables contain input variables which was used in this demo.

account_emai
prod
security =

}

accounts = {
prod = {
organizational unit
environment
}
security = {
organizational_unit
environment
}
}

demo_user_email = "yo

These variables are:
account_emails:

¢ Purpose: Defines the email addresses for each AWS account.
e Usage: Each AWS account requires a unique email address.
¢ Impact: These emails receive AWS account notifications and billing alerts.

accounts:

e Purpose: Defines the structure and metadata for each account.

e organizational_unit: Name of the OU container for each account.

e environment: Tag applied to the account for identification.

e Usage: Used by the module to create accounts and place them in OU.

demo_user_email:

e Purpose: Email address for the SSO demo user.

e Usage: Used to create a user in IAM Identity Center (SSO).

¢ Impact: This email receives SSO login invitations.

¢ Note: Different from account emails - this is for human user access.

4. Step-by-Step Breakdown (Entrypoint’s main.tf)
¢ 4.1 Organization Setup

In main.tf, we initialize AWS Organizations and enable integration with AWS services:

resource "aws_organizations_organization™ "main” {
aws_service_access_principals = [
"cloudtrail.amazonaws.com"”,
"config.amazonaws.com",
"sso.amazonaws.com",
"account.amazonaws.com”

]

feature_set = "ALL"
enabled_policy_types = [
"SERVICE_CONTROL_POLICY™,
"TAG_POLICY"™
1
}

This creates the organization root and enables necessary service access and policy
types.

Service Access Principals Enable Organization-Wide AWS Services:
CloudTrail (cloudtrail.amazonaws.com):

Organization trail - Single CloudTrail that logs API calls across ALL accounts in your
organization.

Config (config.amazonaws.com):

Organization Config rules - Deploy compliance rules to ALL accounts at once.
sso.amazonaws.com - AWS Single Sign-On for centralized user access.
account.amazonaws.com - Account management service integration.

feature_set ="ALL" enables centralized account management, but you should add the
service principals for complete centralization.

Service Control Policies (SCPs) - Restrict what accounts can do.

Tag Policies - Enforce consistent tagging across accounts.

¢ 4.2 Account Creation (Modular)

We us

Organi

setup

e a module called account to create new AWS accounts under their respective
izational Units (OUs). With Terraform modules since configuration is already
in the main.tf of the module, we use the source attribute to call the module and

for_each loop to create accounts using the variables set in the .tfvars file shown earlier.

o0

module "accounts™ {
for_each = var.accounts

source "./modules/account”

account_name title(each.key)

account_email var.account_emails[each.key]
organizational_unit each.value.organizational unit

environment each.value.environment

organization_root_id aws_organizations_organization.main.roots[@].id

Inside modules/account/main.tf, variables.tf and outputs.tf

resource "aws_organizations_organizational unit" “ou™ {

}

name =
parent_id =

resource "aws

}

name =
email =
role_name =
parent_id =

tags = merg

{

Environ

s

var.tags

)

By

var.organizational unit output "account_id" {
var.organization_root_id description = "The ID of the created AWS account”
value = aws_organizations_account.account.id

}

_organizations_account™ "account” {
var.account_name
var.account_email output "account_arn" {
ganizati untA e” 7 description = "The ARN of the created AWS t"
aws_organizations_organizational_unit.ou.id value = aws_organizations_account.account.arn

e(}

ment = var.environment output "organizational_unit_id" {

description = "The ID of the organizational unit"
value = aws_organizations_organizational_unit.ou.id

}

variable “account_name" {
description "The name of the
type

}

variable "account_email” {
description = "The ail ad
type

validation {
condition can(regex("~ -]+ %", var.account_email))
error_message “"The t_ema d email addre
¥
}

variable “"organizational_unit” {
description "The ganizational unit w e the account will be pla

type
}

variable "environment" {
description "The environment
type

}

variable "tags" {
description =
type = ()
default =

}

"Additional tags to

variable “"organization_root_id" {
description "The ot ID of the
type

}

This module performs two actions:
1. Creates an OU using the provided name

2. Creates a new account under the OU with an IAM role
(OrganizationAccountAccessRole)

NB: This is the module being called in the entrypoint’s main.tf . The variables.tf and
outputs.tf are necessary because without the variables.tf, your module would have no
way to acceptinputs, making it impossible to create different accounts with different
names, emails, and OUs and outputs.tf allow your main code to reference the account
IDs and OU IDs created by the module, which is essential for your SSO assignments and
policy attachments.

¢ 4.3 AWS SSO & Permission Sets

We pull the SSO instance data and define permission sets for AdminAccess and
ReadOnlyAccess roles. Session duration for Admin access is 8 hours and Read_only
access for 4 hours. Session duration allowed range, Minimum: 1 hour, Maximum: 12
hours, if not specified default is an hour.

data "aws_ssoadmin_instances™ "main” {
depends_on = [aws_organizations_organization.main]

¥

locals {
sso_instance_arn = tolist(data.aws_ssoadmin_instances.main.arns)[@]
identity_store_id = tolist(data.aws_ssoadmin_instances.main.identity_store_ids)[@]

}

resource "aws_ssoadmin_permission_set™ "admin_access" {
name = "Adm
description Full administrative ac
instance_arn local.sso_instance_arn
session_duration "PT8H"

}

resource "aws_ssoadmin_permission_set™ "readonly_access™ {
name =
description
instance_arn local.sso_instance_arn
session_duration "PT4H"

3

AWS managed policies are attached to these permission sets.

resource "aws_ssoadmin_managed_policy_attachment” "admin_policy" {
instance_arn = local.sso_instance_arn

managed_policy_arn = "arn :iam: :aw licy/AdministratorAcc
permission_set_arn = aws_ssoadmin_perm _set.admin_access.arn

resource "aws_ssoadmin_managed_policy_ attachment” "readonly_ policy" {
instance_arn local.sso_instance_arn
managed_policy_arn "arn tiam: :za)oli eadOnlyAc
permission_set_arn aws_ssoadmin_permission_set.readonly_access.arn

}

¢ 4.4 User and Group Setup

We create an ldentity Store user and assign them to a group (SecurityTeam), which can
be granted access to specific accounts. The policies associated with this group will
affect the users assigned to this group.

resource "aws_identitystore_group” "security_team” {
display name m'

description ecurity team members"
identity_store_id local.identity_store_id

}

resource "aws_identitystore_user” "demo_user" {
identity store id =
display_name
user_name

name {
given_name
family name

}

emails {
value .demo_user_email
primary
}
}

resource "aws_identitystore_group_membership” “demo_user_membership” {
identity_store_id = local.identity_store_id
group_id = aws_identitystore_group.security_team.group_id
member_id = aws_identitystore_user.demo_user.user_id

}

¢ 4.5 Account Assignments

resource "aws_ssoadmin_account_assignment security team_to_security_account™ {
instance_arn = local.sso_instance_arn

permission_set_arn = aws_ssoadmin_permission_set.admin_access.arn

principal_id aws_identitystore_group.security_team.group_id
principal_type "GROUP"

target_id module.accounts["securi].account_id
target_type = "AWS_ACCOUNT"

resource "aws_ssoadmin_account_assignment” "security_team_to_prod_account”
instance_arn = local.sso_instance_arn
permission_set_arn = aws_ssoadmin_permission_set.readonly_access.arn

principal_id identitystore_group.security_team.group_id
principal_type "GROUP"

target_id module.accounts["prod"].account_id
target_type = "AWS_ACCOUNT"

resource

We assign:
e AdminAccess to SecurityTeam for the security account

¢ ReadOnlyAccess to the same group for the production account

¢ 4.6 Service Control Policies (SCPs)

We define and attach an SCP to restrict the use of cost-heavy services like SageMaker,
Redshift, and EMR. Service Control Policies (SCPs) act as guardrails that set the
maximum permissions for accounts in your organization. Here's how they work:

How SCPs Work:
SCPs are DENY policies - they restrict what can be done, they don't grant permissions.

In the Setup:

SSO users with AdminAccess would still be restricted by any SCPs you attach. For
example:

SSO0 gives: Full admin permissions

SCP denies: SageMaker, redshidft and emr access.

Result: Admin access to everything EXCEPT SageMaker, redshift and emr.

resource "aws_organizations_polic "security_restricted_access" {

name
description

type

content = jsonencode ({
Version = "
Statement =
{
Effect
Action
Resource
},

{
Effect = "Deny”

Action = [

“emr:*"
1
Resource = "*"
}
]
b
¥

resource "aws_organizations_policy_attachment” "security_restricted” {
policy_id = aws_organizations_policy.security_restricted_access.id
target_id = module.accounts["security”].organizational_unit_id

lifecycle {
create_before_destroy =
}
¥

5. Cost and Management Considerations

e AWS Cost Explorer for organization-wide view.

e AWS Budgets or cost anomaly detection for account-level alerts.
e Costallocation tags for resource tracking.

e Plan OU structure for future growth.

e Consider nested OUs for complex organizations.

e Enable AWS Config for compliance monitoring.

6. Security Best Practices

e Use SCPs to restrict access to sensitive or expensive services.

e Centralize access with SSO and Permission Sets.

e Assign users to groups, and use those groups for account-level access
assignment.

e Use AWS Security Hub for organization-wide view.

e Maintain SSO permission sets as roles change.

¢ Tagresources with environments and ownership.

7. Proof Of Concept

After terraform apply the Organization is provisioned with its herarchichal view

below.
e AWS Organizations > AWS accounts ®
urgamizatuional structure ACCount createa/joinea aate
AWS Organizations < .
v (]) Root
¥ AWS accounts r-uug2
Invitations

¥ () O prodou
Multi-party approval New

ou-uug2-ky1liahu

Services
. (Prod
Policies ® Created 2025/07/03
Settings New ss7sa70s6155 |
Get started v 0 Securityou

ou-uug2-fhoczidq

Organization ID .
_ @ Security
o-vwzu95x60h Created 2025/07/03

ses351739261 | [
(1@ Amankwa sors [EIEEERTERENTS R
loine

CloudShell Feedback Terms Cookie preferences

As you can see below user is provisioned and its in the securityteam group with the
permission sets displayed.

e IAM Identity Center > Users > demo.user £ G
a

1AM Identity Center < demo.user (Reset password) C Delete user)

Managing instance . _
ssoins-72236cd36718d471 » General information

Dashboard Profile Groups (1) AWS accounts Applications MFA devices (1) Active sessions (0)
Users

Groups

Settings Group memberships (1) Remove from group Add user to groups

To grant permission to this user, add the user to a group that has access to AWS accounts or cloud applications. Learn more [2

¥ Multi-account permissions
S ccounts Q_ Find groups by group name 1 S
Permission sets Group name v | Description v
v Application assignments SecurityTeam Security team members

Applications

CloudShell Feedback Amazon Web Ser Inc. or its affiliates. Privacy Terms Cookie preferences

IAM Identity Center < demo.user (resetpassword) ([petete user)

Managing instance . . R
sso0ins-72236¢d36718d471 » General information

Dashboard Profile Groups (1) AWS accounts Applications MFA devices (1) Active sessions (0)

Users

Groups

A sccount accs) @ ® G
Multi-account permissions Q, Search by account name, ID or email | e Prod

ID: 887847096185

AWS accounts
Permission sets @ AWS accounts (1/2) Applied permission sets (1)
Application assignments [0 Frod A () ReadOnlyAccess
Applications 887847096185 pmessesssilesienan ps-eb7f7265ae5¢3795

() Security a

886351739261 nEE———

Before the user can login to the portal an email should be sent to the user’s email
for the user to verify the email. After verification the user can access the dashboard
through a portal link and set a new password. MFA can also be enforced upon sign
in for another layer of security.

e 1AM Identity Center > Users > demo.user g 6

a

IAM Identity Center < Primary information
Attribute key Value
Managing instance
550ins-72236cd36718d471 Username demo.user
Email e o Verified |
Dashboard
First name Demo
Users
Groups Last name User
Settings Display name Demo User
¥ Multi-account permissions Contact methods
AWS accounts
Permission sets Attribute key Value

v Application assignments Phone number -

Applications Job-related information

Attribute key Value

9 IAM Identity Center > Settings g 0o

-

Identity source ication Mar t Tags

IAM Identity Center <

Managing instance Identity source

s50ins-72236cd36718d471
Choose the directory where you want to manage your users and groups. Learn More [

Identity source

Dashboard
astiboar Identity Center directory
Users
Groups Authentication method Provisioning method
Settings Password Direct
¥ Multi-account permissions AWS access portal URL Identity Store ID
AWS accounts 0 https://d-90663b67a2.awsapps.com/start [2 [0 d-90663b67a2
Permission sets
Issuer URL
¥ Application assignments 0 https://identitycenter.amazonaws.com,ssoins-72236cd36718
d471

Applications

When the user logs in, the user can see the accounts that can be accessed in the

portal.

aws access portal

AWS access portal

Accounts Applications

AWS accounts (2)
Q, Filter accounts by name, ID, or email address

v Prod

887847096185 |

ReadOnlyAccess | Access keys /2

v Security

886351739261 | I

AdminAccess | Access keys 2

Demo A

MFA devices

Sign out

on Web Service: filiates, All ri reserved. Privacy Terms Cookie Preferences

Q ® 3 United States (Ohio) v AdminAccess/demo.user ¥

Console Home i

i Recently visited info

No recently visited services

Explore one of these commonly visited AWS services.

EC2 S3 AuroraandRDS Lambda

CloudShell Feedback

® ©

Applications (0) info

Region: US East (Ohio)

Select Region

us-east-2 (Current Region) ¥ Q, Find applications
1
Name v Description v Region v | Origi ¥ a
No applications
Get started by creating an application
Create appli
< >

© 2025, Amazon Web Services, Inc. or its affiliates. Privacy ~ Terms Cookie preferences

ReadOnlyAccess for demo.user

Q @ = United States (Ohio) ¥ ReadOnlyAccess/demo.user v

Console Home i

Recently visited info

No recently visited services

Explore one of these commonly visited AWS services.

EC2 S3 Aurora and RDS Lambda

CloudShell Feedback

®© ©

+ vtz
Applications (0) o

Region: US East (Ohio)

Select Region

us-east-2 (Current Region) ¥ Q Find applications
1
Name v | Description v Region v | Orig Y a
No applications
started by creating an application
Create app! n
< >

© 2025, Amazon Web Services, Inc. or its affiliates. Privacy Terms Cookie preferences

Because of SCP denying Sagemaker when user tries to access sagemaker user is
denied access even with AdminAccess permission set applied to user.

= ® 6

® AccessDeniedException: User: arn:aws:sts::886351739261:assumed-role/AWSReservedSSO_AdminAccess_0b9abe2bf21f0360/demo.user Diagnose with Amazon Q X

is not authorized to perform: datazone:ListDomains on resource: arn:aws:datazone:us-east-2:886351739261:domain/*

NextGen

Amazon SageMaker Get started with Amazon SageMaker
The center for data, analytics, and

Unified Studio

Create an Amazon SageMaker Unified Studio domain in
this AWS account.

Create a Unified Studio domain

Continue with Amazon DataZone

Continue using Amazon DataZone without any
additional Amazon SageMaker capabilities.

Amazon DataZone is now nart of Amazon SaoeMaker.

@ CloudShell Feedback © 2025, Amazon Web Services, Inc. or its affiliates. Privacy Terms Cookie preferences

