
SETTING UP A MULTI-ACCOUNT AWS ENVIRONMENT USING AWS ORGANIZATIONS,
IAM IDENTITY CENTER (FOMERLY SSO) AND TERRAFORM.

Index

1. Overview

2. Prerequisites

3. Terraform Directory Structure

4. Step-by-Step Breakdown

o Organization Setup

o Account Creation (Module-Based)

o AWS SSO and Permission Sets

o Group and User Setup

o Account Assignments

o Service Control Policy (SCP)

5. Cost and Management Considerations

6. Security Best Practices

7. Proof of Concept

1. Overview

This documentation outlines how to set up a multi-account AWS environment using
AWS Organizations, SSO, and Terraform. It includes automated account creation,
permission set assignments, and security policies. It uses a modular approach to
provision reusable and clean infrastructure code.

2. Prerequisites

Before deploying:

• Terraform installed

• AWS CLI configured

• Administrative IAM credentials with organizations:*, sso:*, and iam:* permissions

• NB: With SSO(IAM Identity Center) you need explicit permission grants attached
to the user being used to provision these resources with Terraform even if you
have the AdministrativeAccess policy attached to this user.

You can use the AWS managed policy Policy ARN:
arn:aws:iam::aws:policy/AWSSSOServiceRolePolicy or search for these in
IAM console:

AWSSSOServiceRolePolicy

AWSSSODirectoryAdministrator

AWSIdentityStoreServiceRolePolicy OR

create a custom policy like:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "sso:*",
 "sso-admin:*",
 "identitystore:*"
],
 "Resource": "*"
 }
]
}

and attach it to the user.
This is AWS security design to prevent accidental SSO modifications.

3. Terraform Directory Structure

aws-org-project/

├── main.tf # Entry point for creating the org, accounts, policies

├── variables.tf

├── outputs.tf

└── modules/

 └── account/

 ├── main.tf # Creates OUs and accounts

 └── variables.tf

VARIABLES

The snippet of terraform configuration below shows a terraform.tfvars file which will
help you get a better understanding of this documentation. The terraform.tfvars
variables contain input variables which was used in this demo.

These variables are:

account_emails:

• Purpose: Defines the email addresses for each AWS account.
• Usage: Each AWS account requires a unique email address.
• Impact: These emails receive AWS account notifications and billing alerts.

accounts:

• Purpose: Defines the structure and metadata for each account.
• organizational_unit: Name of the OU container for each account.
• environment: Tag applied to the account for identification.
• Usage: Used by the module to create accounts and place them in OU.

demo_user_email:

• Purpose: Email address for the SSO demo user.
• Usage: Used to create a user in IAM Identity Center (SSO).
• Impact: This email receives SSO login invitations.
• Note: Different from account emails - this is for human user access.

4. Step-by-Step Breakdown (Entrypoint’s main.tf)

 4.1 Organization Setup

In main.tf, we initialize AWS Organizations and enable integration with AWS services:

This creates the organization root and enables necessary service access and policy
types.

Service Access Principals Enable Organization-Wide AWS Services:

CloudTrail (cloudtrail.amazonaws.com):

Organization trail - Single CloudTrail that logs API calls across ALL accounts in your
organization.

Config (config.amazonaws.com):

Organization Config rules - Deploy compliance rules to ALL accounts at once.

sso.amazonaws.com - AWS Single Sign-On for centralized user access.

account.amazonaws.com - Account management service integration.

feature_set = "ALL" enables centralized account management, but you should add the
service principals for complete centralization.

Service Control Policies (SCPs) - Restrict what accounts can do.

 Tag Policies - Enforce consistent tagging across accounts.

 4.2 Account Creation (Modular)

We use a module called account to create new AWS accounts under their respective
Organizational Units (OUs). With Terraform modules since configuration is already
setup in the main.tf of the module, we use the source attribute to call the module and
for_each loop to create accounts using the variables set in the .tfvars file shown earlier.

Inside modules/account/main.tf, variables.tf and outputs.tf

This module performs two actions:

1. Creates an OU using the provided name

2. Creates a new account under the OU with an IAM role
(OrganizationAccountAccessRole)

NB: This is the module being called in the entrypoint’s main.tf . The variables.tf and
outputs.tf are necessary because without the variables.tf, your module would have no
way to accept inputs, making it impossible to create different accounts with different
names, emails, and OUs and outputs.tf allow your main code to reference the account
IDs and OU IDs created by the module, which is essential for your SSO assignments and
policy attachments.

 4.3 AWS SSO & Permission Sets

We pull the SSO instance data and define permission sets for AdminAccess and
ReadOnlyAccess roles. Session duration for Admin access is 8 hours and Read_only
access for 4 hours. Session duration allowed range, Minimum: 1 hour, Maximum: 12
hours, if not specified default is an hour.

AWS managed policies are attached to these permission sets.

 4.4 User and Group Setup

We create an Identity Store user and assign them to a group (SecurityTeam), which can
be granted access to specific accounts. The policies associated with this group will
affect the users assigned to this group.

 4.5 Account Assignments

We assign:

• AdminAccess to SecurityTeam for the security account

• ReadOnlyAccess to the same group for the production account

 4.6 Service Control Policies (SCPs)

We define and attach an SCP to restrict the use of cost-heavy services like SageMaker,
Redshift, and EMR. Service Control Policies (SCPs) act as guardrails that set the
maximum permissions for accounts in your organization. Here's how they work:

How SCPs Work:

SCPs are DENY policies - they restrict what can be done, they don't grant permissions.

In the Setup:
SSO users with AdminAccess would still be restricted by any SCPs you attach. For
example:
SSO gives: Full admin permissions
SCP denies: SageMaker, redshidft and emr access.
Result: Admin access to everything EXCEPT SageMaker, redshift and emr.

5. Cost and Management Considerations

• AWS Cost Explorer for organization-wide view.
• AWS Budgets or cost anomaly detection for account-level alerts.
• Cost allocation tags for resource tracking.
• Plan OU structure for future growth.
• Consider nested OUs for complex organizations.
• Enable AWS Config for compliance monitoring.

6. Security Best Practices

• Use SCPs to restrict access to sensitive or expensive services.
• Centralize access with SSO and Permission Sets.
• Assign users to groups, and use those groups for account-level access

assignment.
• Use AWS Security Hub for organization-wide view.
• Maintain SSO permission sets as roles change.
• Tag resources with environments and ownership.

7. Proof Of Concept

After terraform apply the Organization is provisioned with its herarchichal view
below.

As you can see below user is provisioned and its in the securityteam group with the
permission sets displayed.

Before the user can login to the portal an email should be sent to the user’s email
for the user to verify the email. After verification the user can access the dashboard
through a portal link and set a new password. MFA can also be enforced upon sign
in for another layer of security.

When the user logs in, the user can see the accounts that can be accessed in the
portal.

AdminAccess for demo.user

ReadOnlyAccess for demo.user

Because of SCP denying Sagemaker when user tries to access sagemaker user is
denied access even with AdminAccess permission set applied to user.

