
DEMO DOCUMENTATION: DEPLOYING APPLICATIONS ON AWS ECS (FARGATE VS EC2)

Index

1. Introduction

2. Objective

3. Prerequisites

4. Architecture Overview

o ECS with Fargate

o ECS with EC2 Launch Type

5. Deployment with Terraform

6. Observations & Key Differences

7. Security Considerations

8. Cost Implications

9. Final Thoughts & Recommendations

10. Proof of Concept

This documentation aims to empower DevOps and Cloud Engineers with practical knowledge

to choose and deploy ECS-based architectures effectively.

1. INTRODUCTION

This document provides a detailed walkthrough of two approaches to deploying

containerized applications using AWS Elastic Container Service (ECS):

• Fargate (serverless compute engine)

• EC2 (provisioned compute instances)

2. OBJECTIVE

To compare resource management, scalability, and operational overhead between AWS ECS

Fargate and ECS EC2 launch types.

3. PREREQUISITES

• AWS Account with appropriate permissions

• Dockerized application (e.g., Node.js or Flask app)

• AWS CLI & Terraform installed with aws credentials configured

4. ARCHITECTURE OVERVIEW

ECS with Fargate:

The workflow operates as follows:

- Developer pushes image to ECR.

- ECS Service deploys and manages tasks using that image.

- Tasks run in Fargate with networking provided by the default VPC/subnets.

- Security groups control access to the tasks.

- Container logs are sent to CloudWatch.

ECS with EC2:

• Developer pushes image to ECR.

• ECS agent on EC2 pulls image from ECR

Creates containers based on task definition

Manages container lifecycle (start, stop, restart)

Registers container IPs with ALB target group

• ALB distributes traffic to various instances in subnets.

• ASG to scale instances when there is no capacity for new containers.

• CloudWatch monitors everything

 Container logs → CloudWatch Logs (/ecs/react-app)

 ECS metrics → Service health, task count

 EC2 metrics → CPU, memory usage

 ALB metrics → Request count, response times

This is the Dockerfile which was used to build the react app on node:alpine and exposed

on port 3000 which will be used in the deployment.

5.DEPLOYMENT OF A CONTAINERIZED APPLICATION ON AMAZON ECS (EC2 LAUNCH TYPE)

USING TERRAFORM

Overview

The snippets of Terraform configuration below automates the provisioning and deployment

of a containerized application to Amazon ECS using the EC2 launch type. The architecture

utilizes a fully managed ECS Cluster running on EC2 instances, with scalable backend

compute, application-level load balancing, secure networking, and logging via AWS

CloudWatch.

Infrastructure Components Deployed

VPC & Subnets

• The configuration dynamically fetches the default VPC and a set of available subnets

across selected availability zones in us-east-1.

• Ensures high availability and proper distribution of resources.

• us-east-1e was excluded because the type of instance being provisioned wasn’t

available in that Availability zone.

ECR Repository

• Creates an Amazon Elastic Container Registry (aws_ecr_repository.app) to store the

Docker image (:latest tag assumed in this demo).

• Enables force_delete to automatically delete any images in the repository during

teardown.

ECS Cluster

• An ECS cluster (aws_ecs_cluster.main) is created to host EC2 container instances.

IAM Roles

Creates two roles:

o Execution Role for ECS tasks to interact with AWS services like ECR and

CloudWatch.

o Instance Role for ECS EC2 instances to register into the cluster and manage

containers.

CloudWatch Logging

• A log group (aws_cloudwatch_log_group.app) is provisioned for centralized logging

from ECS containers.

 EC2 Launch Infrastructure

• A Launch Template is configured to spin up EC2 instances using the ECS-optimized

Amazon Linux 2 AMI. The user data in the launch template appends the name of the

cluster to an ecs.config file upon launching an instance, the ECS agent reads this file

and registers with the cluster. Without the user data, EC2 instances wouldn't know

which ECS cluster to join.

• An Auto Scaling Group (ASG) is used to maintain the desired number of ECS EC2

instances (min 1, max 3), desired capacity was set as a variable which is 1. The ASG is

triggered by ECS automatically when it tries to place a container and there is no

capacity on the EC2 to accommodate the container.

Security Groups

• Created for:

o The Application Load Balancer (ALB)

Purpose: Controls traffic to/from the Application Load Balancer.

 Allows: HTTP (port 80) from the internet.

 Outbound: All traffic to anywhere (needed to reach containers).

o ECS EC2 instances (includes SSH access)

Purpose: Controls traffic to/from the EC2 host instances.

 Allows: SSH (port 22) for admin access (restrict to specific IP ranges for better

 Security).

 Outbound: All traffic to anywhere (needed for updates, container pulls).

o ECS tasks (for container communication)

Purpose: Controls traffic to/from the containers themselves.

Allows: Traffic on container port (3000) ONLY from the ALB.

 Outbound: All traffic to anywhere (needed for API calls, dependencies).

This setup provides defense-in-depth, containers can only be accessed through the ALB, not

directly from the internet, creating a secure architecture.

 Application Load Balancer (ALB)

• An ALB is created to expose the application on port 80.

• Health checks are defined to route traffic only to healthy ECS containers.

• A listener is added to forward HTTP traffic to the appropriate target group.

ECS Task Definition

• Defines the Docker container configuration using:

o The ECR image

o Container port mapping

o Log configuration

• Network mode is set to awsvpc, allowing the task to get its own ENI(Elastic Network

Interface) and IP address. This helps with direct vpc connectivity, integrates with ALB

by setting target type= “ip” on the ALB (ALB connects directly to container IPs) and

better security isolation (task-level security groups)

ECS Service

• Launches the defined number of ECS tasks on EC2 instances.

• Registers the containers with the target group attached to the ALB.

• Manages scaling and deployment of the application in the ECS cluster.

Service Launch:

o The ECS service pulls the image from ECR and launches it in containers across

the EC2 instances.

o The ALB routes external HTTP traffic to healthy containers based on the

defined listener and target group.

Deployment Flow Summary

Infrastructure Provisioning:

o Run terraform apply to provision VPC-related data sources, ECS Cluster, IAM

roles, security groups, load balancer, and EC2 instances.

Docker Image Handling:

After terraform apply, run the following commands to build and push your image to ECR.

These commands can be added to the outputs file in the terraform configuration so you

get the details of the ECR url and respective variables. The build command can be ignored

if the image is already built. You can build and start the container locally before pushing it

to the container registry.

 Benefits of This Architecture

• Elastic Scaling: Easily adjust the desired count of ECS tasks or EC2 instances.

• Security: Isolated container networking, IAM-based access controls, and granular

security groups.

• Observability: Real-time log streaming to AWS CloudWatch for diagnostics.

Deployment of a Containerized Application on Amazon ECS Fargate Using Terraform

Overview

The snippets of Terraform configuration below provisions a serverless containerized

application using Amazon ECS Fargate, eliminating the need to manage EC2 infrastructure. It

sets up the networking, security, IAM roles, ECS Cluster, Task Definition, and ECS Service to

run your container in a secure, scalable, and cost-efficient manner.

 Key Components and Workflow

Provider & Region Configuration

• Declares the AWS provider and specifies the target AWS region from a variable

(var.aws_region).

• Ensures compatibility with the required AWS provider version ~> 5.0.

Networking Setup

• Uses data sources to retrieve the default VPC and its associated subnets for

deploying the ECS service.

• These subnets are used to place the Fargate tasks.

ECR Repository

• Creates an Elastic Container Registry (ECR) repository to store your container image

(latest tag assumed).

• Enables force_delete to automatically delete any images in the repository during

teardown.

ECS Cluster

• Provisions an ECS Cluster (aws_ecs_cluster.main) to host your Fargate services.

• No EC2 provisioning is necessary—Fargate abstracts the compute layer.

 IAM Role for Task Execution

• Creates an IAM role with a trust policy allowing ECS tasks to assume it.

• Attaches the AmazonECSTaskExecutionRolePolicy to allow:

o Pulling images from ECR

o Pushing logs to CloudWatch

Security Group

• Defines a security group to:

o Allow inbound traffic to your container on var.container_port(3000)

o Allow all outbound traffic to the internet

• The security group is associated with the ECS service for Fargate networking.

CloudWatch Logs

• Creates a CloudWatch Log Group to store logs generated by the ECS task containers.

• Logs are streamed using the awslogs driver.

ECS Task Definition

• Specifies:

o awsvpc network mode (required by Fargate)

o Fargate-specific resources: 256 CPU units and 512 MiB memory

o The container image from ECR

o Port mapping (e.g., 80 or 3000 depending on your app)

o Log configuration pointing to CloudWatch

 ECS Fargate Service

• Launches the ECS service with:

o Fargate launch type (no EC2 instances required)

o Reference to the task definition created above

o Subnets for network placement

o Public IP assignment for external accessibility

o Attached security group

o Desired count of containers specified by var.desired_count (1)

ECS Service Starts:

o ECS Fargate launches the container from ECR.

o Logs are streamed to CloudWatch.

o If configured with public IP, the container is accessible externally.

Deployment Workflow

Infrastructure Provisioning:

o Run terraform apply to provision:

▪ ECS Cluster

▪ IAM roles

▪ ECR repository

▪ Security groups

▪ Task definition

▪ ECS Service

Build & Push Docker Image:

After terraform apply, run the following commands to build and push your image to ECR.

These commands can be added to the outputs file in the terraform configuration so you

get the details of the ECR url and respective variables. The build command can be ignored

if the image is already built. You can build and start the container locally before pushing it

to the container registry.

 Why Use Fargate?

• Serverless Containers: No EC2 provisioning or management required.

• Granular Costing: Pay per task-level resource usage.

• Scalability: Easily adjust desired_count for auto-scaling.

6. OBSERVATIONS & KEY DIFFERENCES

Feature ECS Fargate ECS EC2

Infrastructure Managed
Self-

managed

Scaling Automatic
Manual

or ASG

Cost Pay-per-task
Pay for

instances

Customization Limited High

7. SECURITY CONSIDERATIONS

• Ensure IAM roles follow least privilege

• EC2 instances or Fargate tasks can be put in private subnets, EC2 instances and

Fargate in private subnets can be accessed by ALB and will need a NAT Gateway for

pulling images and making API calls.

• Enable encryption (EFS or EBS, secrets management)

8. COST IMPLICATIONS

• Fargate: Ideal for bursty workloads, reduced admin

• EC2: Cost-efficient for consistent workloads

9. FINAL THOUGHTS & RECOMMENDATIONS

• Use Fargate for simpler, serverless deployments and rapid scaling

• Use EC2 for customized environments, consistent usage patterns, or legacy

compatibility

10. PROOF OF CONCEPT

EC2 Launch type: The pictures below shows the DNS of the ALB in the AWS console and how

the application is being accessed. For EC2 Launch type, the DNS of the ALB will be copied

into a browser to access the application.

Fargate Launch type: The pictures below shows a fargate task running in the AWS console.

For Fargate Launch type the public IP address of the task is appended with the port the

container is listening on to access the application.

